Problem 12

(a) Show that the function $f(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$ is an odd function.
(b) Find the inverse function of f.

Solution

Part (a)

In order to show that the function is odd, it must be shown that $f(-x)=-f(x)$.

$$
\begin{aligned}
f(-x) & =\ln \left[(-x)+\sqrt{(-x)^{2}+1}\right] \\
& =\ln \left(-x+\sqrt{x^{2}+1}\right) \\
& =\ln \left[\left(-x+\sqrt{x^{2}+1}\right) \times \frac{-x-\sqrt{x^{2}+1}}{-x-\sqrt{x^{2}+1}}\right] \\
& =\ln \frac{\left(-x+\sqrt{x^{2}+1}\right)\left(-x-\sqrt{x^{2}+1}\right)}{-x-\sqrt{x^{2}+1}} \\
& =\ln \frac{(-x)^{2}-\left(x^{2}+1\right)}{-x-\sqrt{x^{2}+1}} \\
& =\ln \frac{x^{2}-x^{2}-1}{-x-\sqrt{x^{2}+1}} \\
& =\ln \frac{-1}{-x-\sqrt{x^{2}+1}} \\
& =\ln \frac{1}{x+\sqrt{x^{2}+1}} \\
& =\ln \left(x+\sqrt{x^{2}+1}\right)^{-1} \\
& =-\ln \left(x+\sqrt{x^{2}+1}\right) \\
& =-f(x)
\end{aligned}
$$

Therefore, the function $f(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$ is an odd function.

Part (b)

In order to find the inverse of

$$
f(x)=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

replace $f(x)$ with x, and replace x with y.

$$
x=\ln \left(y+\sqrt{y^{2}+1}\right)
$$

Then solve for y. Start by exponentiating both sides.

$$
\begin{aligned}
& e^{x}=e^{\ln \left(y+\sqrt{y^{2}+1}\right)} \\
& e^{x}=y+\sqrt{y^{2}+1}
\end{aligned}
$$

Bring y to the left side.

$$
e^{x}-y=\sqrt{y^{2}+1}
$$

Square both sides.

$$
\left(e^{x}-y\right)^{2}=y^{2}+1
$$

Expand the left side.

$$
e^{2 x}-2 y e^{x}+y^{2}=y^{2}+1
$$

Subtract both sides by y^{2}.

$$
e^{2 x}-2 y e^{x}=1
$$

Bring 1 to the left, and bring $2 y e^{x}$ to the right.

$$
e^{2 x}-1=2 y e^{x}
$$

Divide both sides by $2 e^{x}$.

$$
\frac{e^{2 x}-1}{2 e^{x}}=y
$$

Therefore, the inverse function is

$$
f^{-1}(x)=\frac{e^{2 x}-1}{2 e^{x}}
$$

